Диагностическая значимость протеомного анализа плазмы крови при задержке роста плода

Волочаева М.В., Токарева А.О., Кононихин А.С., Кукаев Е.Н., Тютюнник В.Л., Кан Н.Е. Стародубцева Н.Л.

1) ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России, Москва, Россия; 2) Сколковский институт науки и технологий, Москва, Россия; 3) Институт энергетических проблем химической физики им. В.Л. Тальрозе ФГБУН «Федеральный исследовательский центр химической физики им. Н.Н. Семенова» РАН, Москва, Россия

Цель: Определить критерии диагностики задержки роста плода на основании количественного протеомного анализа плазмы крови беременной.
Материалы и методы: В исследование «случай-контроль» были включены 50 беременных, разделенных на 5 групп. Группа I – беременные с ранней задержкой роста плода (<32 недель) (n=10), группа II – 
с поздней задержкой роста плода (≥32 недель) (n=10), группы III и IV – пациентки, родоразрешенные до и после 32 недель (n=10/n=10) соответственно, группа V – беременные с плодами, маловесными к сроку гестации (≥32 недель) (n=10). Постнатальная оценка массо-ростовых показателей у новорожденных (n=50) проводилась согласно центильным кривым INTERGROWTH-21 для подтверждения антенатального диагноза задержки роста и маловесного плода, а также установления нормальной массы тела в группе с преждевременными родами (до 32 и после 32 недель). Количественный анализ 125 белков плазмы крови проведен с использованием набора BAK 125 (MRM Proteomics Inc., Монреаль, Канада) методом высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией (ВЭЖХ-МС/МС). На основе логистической регрессии были созданы диагностические модели для задержки роста и маловесного плода после предварительного процессинга данных.
Результаты: На основании полученных результатов количественного протеомного анализа белков плазмы крови матери были разработаны 3 диагностические модели. Модель «1» (AUC=0,86), включающая альфа-2-макроглобулин в качестве переменной, с чувствительностью и специфичностью 90% позволяет проводить диагностику ранней формы задержки роста плода. Модель «2» (AUC=0,88), включающая в качестве переменной белки альфа-2-макроглобулин и аполипопротеин A-IV, с чувствительностью 90% и специфичностью 80% позволяет диагностировать позднюю форму задержки роста плода. Модель «3» (AUC=0,80), в основу которой в качестве переменной введены белки антитромбин-III и аполипопротеин C-I, с чувствительностью 80% и специфичностью 80% может быть использована для проведения дифференциальной диагностики поздней формы задержки роста и маловесного к сроку гестации плода.
Заключение: Результаты данного исследования могут быть использованы в формировании подходов к новым методам диагностики различных форм задержки роста и маловесного плода, а также явиться отправной точкой для будущих исследований по изучению, в том числе, потенциальных терапевтических мишеней.

Вклад авторов: Волочаева М.В., Токарева А.О., Кононихин А.С., Кукаев Е.Н., Тютюнник В.Л., Кан Н.Е., 
Стародубцева Н.Л. – концепция и разработка дизайна исследования, получение данных для анализа, обзор публикаций, обработка и анализ материала по теме, статистический анализ полученных данных, написание текста рукописи, редактирование статьи.
Конфликт интересов: Авторы заявляют об отсутствии возможных конфликтов интересов.
Финансирование. Работа выполнена в рамках экспериментального научного исследования «Совершенствование тактики ведения и сроков родоразрешения беременных с задержкой роста плода на основании изучения молекулярно-генетических и метаболомных факторов с последующим внедрением современных методов диагностики тяжести течения данного осложнения гестации» 121040600408-4.
Одобрение Этического комитета: Исследование было одобрено локальным этическим комитетом 
ФГБУ «НМИЦ АГП им. акад. В.И. Кулакова» Минздрава России.
Согласие пациентов на публикацию: Все пациентки подписали добровольное информированное согласие на публикацию своих данных.
Обмен исследовательскими данными: Данные, подтверждающие выводы этого исследования, доступны по запросу у автора, ответственного за переписку, после одобрения ведущим исследователем.
Для цитирования: Волочаева М.В., Токарева А.О., Кононихин А.С., Кукаев Е.Н., Тютюнник В.Л., Кан Н.Е., Стародубцева Н.Л. Диагностическая значимость протеомного анализа плазмы крови при задержке роста плода. Акушерство и гинекология. 2024; 4: 59-68
https://dx.doi.org/10.18565/aig.2023.299

Ключевые слова

задержка роста плода
диагностика
количественный протеомный анализ
маловесный к сроку гестации плод

Список литературы

  1. McCowan L.M., Figueras F., Anderson N.H. Evidence-based national guidelines for the management of suspected fetal growth restriction: comparison, consensus, and controversy. Am. J. Obstet. Gynecol. 2018; 218(2S): 855-68. https://dx.doi.org/10.1016/j.ajog.2017.12.004.
  2. Министерство здравоохранения Российской Федерации. Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). Клинические рекомендации (протокол лечения). М.; 2022. 71 с.
  3. Gordijn S.J., Beune I.M., Thilaganathan B., Papageorghiou A., Baschat A.A., Baker P.N. et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet. Gynecol. 2016; 48(3): 333-9. https://dx.doi.org/10.1002/uog.15884.
  4. Haragan A., Himes K. Accuracy of ultrasound estimated fetal weight in small for gestational age and appropriate for gestational age grown periviable neonates. Am. J. Perinatol. 2018; 35(8): 703-6. https://dx.doi.org/10.1055/s-0037-1617433.
  5. Ганичкина М.Б., Мантрова Д.А., Кан Н.Е., Тютюнник В.Л., Хачатурян А.А., Зиганшина М.М. Ведение беременности при задержке роста плода. Акушерство и гинекология. 2017; 10: 5-11.
  6. Unterscheider J., Daly S., Geary M.P., Kennelly M.M., McAuliffe F.M., O'Donoghue K. et al. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. Am. J. Obstet. Gynecol. 2013; 208(4): 290.e1-6. https://dx.doi.org/10.1016/j.ajog.2013.02.007.
  7. Gordijn S.J., Beune I.M., Ganzevoort W. Building consensus and standards in fetal growth restriction studies. Best Pract. Res. Clin. Obstet. Gynaecol. 2018; 49: 117-26. https://dx.doi.org/10.1016/j.bpobgyn.2018.02.002.
  8. Kononikhin A.S., Zakharova N.V., Semenov S.D., Bugrova A.E., Brzhozovskiy A.G., Indeykina M.I. et al. Prognosis of Alzheimer's disease using quantitative mass spectrometry of human blood plasma proteins and machine learning. Int. J. Mol. Sci. 2022; 23(14):7907. https://dx.doi.org/10.3390/ijms23147907.
  9. Токарева А.О., Чаговец В.В., Кононихин А.С., Стародубцева Н.Л., Франкевич В.Е., Николаев Е.Н. Алгоритм обработки масс-спектрометрических данных для получения диагностической панели молекулярных соединений на примере поиска маркеров метастазирования при раке молочной железы. Biomedical Chemistry: Research and Methods. 2021, 4(3): e00156.
  10. Tokareva A.O., Chagovets V.V., Kononikhin A.S., Starodubtseva N.L., Frankevich V.E., Nikolaev E.N. Comparison of the effectiveness of variable selection method for creating a diagnostic panel of biomarkers for mass spectrometric lipidome analysis. JMS. 2021; 56(3): e4702. https://dx.doi.org/10.1002/jms.4702.
  11. Anwar M.A., Dai D.L., Wilson-McManus J., Smith D., Francis G.A., Borchers C.H. et al. Multiplexed LC-ESI-MRM-MS-based assay for identification of coronary artery disease biomarkers in human plasma. Proteomics Clin. Appl. 2019; 13(4): e1700111. https://dx.doi.org/10.1002/prca.201700111.
  12. Bhardwaj M., Gies A., Weigl K., Tikk K., Benner A., Schrotz-King P. et al. Evaluation and validation of plasma proteins using two different protein detection methods for early detection of colorectal cancer. Cancers (Basel). 2019; 11(10): 1426. https://dx.doi.org/10.3390/cancers11101426.
  13. Sovio U., White I.R., Dacey A., Pasupathy D., Smith G.C.S. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study. Lancet. 2015; 386(10008): 2089-97. https://dx.doi.org/10.1016/S0140-6736(15)00131-2.
  14. Miranda J., Rodriguez-Lopez M., Triunfo S., Sairanen M., Kouru H., Parra-Saavedra M. et al. Prediction of fetal growth restriction using estimated fetal weight vs a combined screening model in the third trimester. Ultrasound Obstet. Gynecol. 2017; 50(5): 603-11. https://dx.doi.org/10.1002/uog.17393.
  15. MacDonald T.M., Hui L., Robinson A.J., Dane K.M., Middleton A.L., Tong S. et al. Cerebral-placental-uterine ratio as novel predictor of late fetal growth restriction: prospective cohort study. Ultrasound Obstet. Gynecol. 2019; 54(3): 367-75. https://dx.doi.org/10.1002/uog.20150.
  16. Vollgraff Heidweiller-Schreurs C.A., De Boer M.A., Heymans M.W., Schoonmade L.J., Bossuyt P.M.M., Mol B.W.J. et al. Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2018; 51(3): 313-22. https://dx.doi.org/10.1002/uog.18809.
  17. Morales-Roselló J., Buongiorno S., Loscalzo G., Abad García C., Cañada Martínez A.J., Perales Marín A. Does uterine Doppler add information to the cerebroplacental ratio for the prediction of adverse perinatal outcome at the end of pregnancy? Fetal. Diagn. Ther. 2020; 47(1): 34-44. https://dx.doi.org/10.1159/000499483.
  18. Alles J., Fehlmann T., Fischer U., Backes C., Galata V., Minet M. et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019; 47(7): 3353-64. https://dx.doi.org/10.1093/nar/gkz097.
  19. Sayed D., Abdellatif M. MicroRNAs in development and disease. Physiol. Rev. 2011; 91(3): 827-87. https://dx.doi.org/10.1152/physrev.00006.2010.
  20. Hu X.Q., Zhang L. MicroRNAs in uteroplacental vascular dysfunction. Cells. 2019; 8(11):1344. https://dx.doi.org/10.3390/cells8111344.
  21. Kajdy A., Modzelewski J., Cymbaluk-Płoska A., Kwiatkowska E., Bednarek-Jędrzejek M., Borowski D. et al. Molecular pathways of cellular senescence and placental aging in late fetal growth restriction and stillbirth. Int. J. Mol. Sci. 2021; 22(8): 4186. https://dx.doi.org/10.3390/ijms22084186.
  22. Blitz M.J., Rochelson B., Vohra N. Maternal serum analytes as predictors of fetal growth restriction with dierent degrees of placental vascular dysfunction. Clin. Lab. Med. 2016; 36(2): 353-67. https://dx.doi.org/10.1016/j.cll.2016.01.006.
  23. Crovetto F., Triunfo S., Crispi F., Rodriguez-Sureda V., Roma E., Dominguez C. et al. First-trimester screening with specific algorithms for early- and late-onset fetal growth restriction. Ultrasound Obstet. Gynecol. 2016; 48(3): 340-8. https://dx.doi.org/10.1002/uog.15879.
  24. Priante E., Verlato G., Giordano G., Stocchero M., Visentin S., Mardegan V. et al. Intrauterine growth restriction: new insight from the metabolomic approach. Metabolites. 2019; 9(11): 267. https://dx.doi.org/10.3390/metabo9110267.
  25. Dessì A., Ottonello G., Fanos V. Physiopathology of intrauterine growth retardation: from classic data to metabolomics. J. Matern. Fetal Neonat. Med. 2012; 25(Suppl 5): 13-8. https://dx.doi.org/10.3109/14767058.2012.714639.
  26. Favretto D., Cosmi E., Ragazzi E., Visentin S., Tucci M. et al. Cord blood metabolomic profiling in intrauterine growth restriction. Anal. Bioanal. Chem. 2012; 402(3): 1109-21. https://dx.doi.org/10.1007/s00216-011-5540-z.
  27. Bahado-Singh R.O., Yilmaz A., Bisgin H., Turkoglu O., Kumar P., Sherman E. et al. Artificial intelligence and the analysis of multi-platform metabolomics data for the detection of intrauterine growth restriction. PLoS One. 2019; 14(4): e0214121. https://dx.doi.org/10.1371/journal.pone.0214121.
  28. Miranda J., Simões R.V., Paules C., Cañueto D., Pardo-Cea M.A., García-Martín M.L. et al. Metabolic profiling and targeted lipidomics reveals a disturbed lipid profile in mothers and fetuses with intrauterine growth restriction. Sci. Rep. 2018; 8(1): 13614. https://dx.doi.org/10.1038/s41598-018-31832-5.
  29. Paules C., Youssef L., Miranda J., Crovetto F., Estanyol J.M., Fernandez G. et al. Maternal proteomic profiling reveals alterations in lipid metabolism in late-onset fetal growth restriction. Sci. Rep. 2020; 10(1): 21033. https://dx.doi.org/10.1038/s41598-020-78207-3.
  30. Youssef L., Erlandsson L., Åkerström B., Miranda J., Paules C., Crovetto F. et al. Hemopexin and α1-microglobulin heme scavengers with differential involvement in preeclampsia and fetal growth restriction. PLoS One. 2020; 15(9): e0239030. https://dx.doi.org/10.1371/journal.pone.0239030.

Поступила 22.12.2023

Принята в печать 20.03.2024

Об авторах / Для корреспонденции

Волочаева Мария Вячеславовна, к.м.н., с.н.с. департамента регионального сотрудничества и интеграции; врач 1 родильного отделения, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова Министерства здравоохранения Российской Федерации,
117997, Россия, Москва, ул. Академика Опарина, д. 4, +7(919)968-72-98, volochaeva.m@yandex.ru, https://orcid.org/0000-0001-8953-7952
Токарева Алиса Олеговна, к.ф.-м.н., специалист лаборатории клинической протеомики, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова Министерства здравоохранения Российской Федерации, 117997, Россия, Москва, ул. Академика Опарина, д. 4,
+7(495)531-44-44 (доб. 3113), alisa.tokareva@phystech.edu, https://orcid.org/0000-0001-5918-9045
Кононихин Алексей Сергеевич, к.ф.-м.н., с.н.с. лаборатории клинической протеомики, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова Министерства здравоохранения Российской Федерации, 117997, Россия, Москва ул. Академика Опарина, д. 4; с.н.с. лаборатории масс-спектрометрии, Сколковский институт науки и технологий, +7(495)531-44-44 (доб. 3113), a_kononihin@oparina4.ru,
https://orcid.org/0000-0002-2238-3458
Кукаев Евгений Николаевич, к.ф.-м.н., с.н.с. лаборатории клинической протеомики, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова Министерства здравоохранения Российской Федерации, 117997, Россия, Москва ул. Академика Опарина, д. 4; н.с. Института энергетических проблем химической физики им. В.Л. Тальрозе ФГБУН «Федеральный исследовательский центр химической физики им. Н.Н. Семенова» РАН, +7(495)531-44-44 (доб. 3113), e_kukaev@oparina4.ru, https://orcid.org/0000-0002-8397-3574
Тютюнник Виктор Леонидович, профессор, д.м.н., в.н.с. центра научных и клинических исследований, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова Министерства здравоохранения Российской Федерации, 117997, Россия, Москва ул. Академика Опарина, д. 4, +7(903)969-50-41, tioutiounnik@mail.ru, Researcher ID: B-2364-2015, SPIN-код: 1963-1359, Authors ID: 213217, Scopus Author ID: 56190621500,
https://orcid.org/0000-0002-5830-5099
Кан Наталья Енкыновна, профессор, д.м.н., заместитель директора по научной работе, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова Министерства здравоохранения Российской Федерации, 117997, Россия, Москва ул. Академика Опарина, д. 4,
+7(926)220-86-55, kan-med@mail.ru, Researcher ID: B-2370-2015, SPIN-код: 5378-8437, Authors ID: 624900, Scopus Author ID: 57008835600,
https://orcid.org/0000-0001-5087-5946
Стародубцева Наталия Леонидовна, к.б.н., доцент, заведующая лабораторией клинической протеомики, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова Министерства здравоохранения Российской Федерации,
117997, Россия, Москва ул. Академика Опарина, д. 4, +7(495)531-44-44 (доб. 3113), n_starodubtseva@oparina4.ru, https://orcid.org/0000-0001-6650-5915
Автор, ответственный за переписку: Мария Вячеславовна Волочаева, volochaeva.m@yandex.ru

Также по теме

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.