МикроРНК и преждевременная овариальная недостаточность

Дмитриева М.Л., Тихоновская О.А., Романова А.А., Логвинов С.В.

ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России, Томск, Россия
Актуальность изучения роли микроРНК в патогенезе заболеваний органов и систем не вызывает сомнения. Репродуктивная система не является исключением. С начала 2000-х гг. было проведено множество исследований по выявлению микроРНК в яичниках. Обзор литературы демонстрирует важную роль микроРНК в фолликулогенезе, в том числе в качестве регуляторов апоптоза в клетках гранулезы, при овуляции и лютеинизации. Установлено, что микроРНК могут быть важными регуляторными молекулами, участвующими непосредственно в формировании преждевременной овариальной недостаточности и синдрома поликистозных яичников. МикроРНК могут стать биологическими маркерами овариального резерва, что имеет большое значение в репродуктологии.

Ключевые слова

микроРНК
яичник
репродукция
фолликулогенез
овариальная недостаточность

Список литературы

  1. Герштейн Е.С., Кушлинский Д.Н., Адамян Л.В., и cоавт. МикроРНК как биологические маркеры рака яичников. Молекулярная медицина. 2016; 14 (5): 3–14.

  2. Chapman C., Cree L., Shelling A.N. The genetic of premature ovarian failure: current perspectives. Int J Womans Health. 2015; 7: 799–810. doi:10.2147/IJWH.S64024.
  3. Jiao X., Ke H., Qin Y., Chen Z.J. Molecular Genetics of Premature Ovarian Insufficiency. 2018; 29(11): 795–807. doi: 10.1016/j.tem.2018.07.002
  4. Cordts E., Christofolini D., Amaro dos Santos A., et al. Genetic aspects of premature ovarian failure: a literature review. Arch Gynecol Obstet. 2011; 283: 635–43. doi: 10.1007/s00404-010-1815-4.
  5. Wood M.A., Rajkovic A. Genomic markers of ovarian reserve. Semin Reprod Med. 2013; 31: 399–415. doi: 10.1055/s-0033-1356476.
  6. Qin Y., Jiao X., Dalgleish R., et al. Novel variants in the SOHLH2 gene are implicated in human premature ovarian failure. Fertil Steril. 2014; 101(4): 1104–1109.e6. doi: 10.1016/j.fertnstert.2014.01.001.
  7. Qin Y., Choi Y., Zhao H., Simpson J.L., Chen Z.J., Rajkovic A. NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet. 2007; 81: 576–581. doi: 10.1086/519496
  8. Lourenco D., Brauner R., Lin L., et al. Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med. 2009; 360: 1200–10. doi: 10.1056/NEJMoa0806228.
  9. Persani L., Rossetti R., Cacciatore C. Genes involved in human premature ovarian failure. J Mol Endocrinol. 2010; 45: 257–79. doi: 10.1677/JME-10-0070.
  10. Bashamboo A., McElreavey K. NR5A1/SF-1 and development and function of the ovary. Ann Endocrinol (Paris) 2010; 71: 177–82. doi: 10.1016/j.ando.2010.02.013.
  11. Rajkovic A., Pangas S.A., Ballow D., Suzumori N., Matzuk M.M. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science. 2004; 305: 1157–9. doi: 10.1126/science.1099755.
  12. Zhao H., Chen Z.J., Qin Y., et al. Transcription factor FIGLA is mutated in patients with premature ovarian failure. Am J Hum Genet. 2008; 82: 1342–8.doi: 10.1016/j.ajhg.2008.04.018.
  13. Harris S., Chand A., Winship I., Gersak K., Aittomaki K., Shelling A. Identification of novel mutations in FOXL2 associated with premature ovarian failure. Mol Hum Reprod. 2002; 8: 729–33. doi: 10.1093/molehr/8.8.729
  14. Choi Y., Yuan D., Rajkovic A. Germ cell-specific transcriptional regulator Sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression. Biol Reprod. 2008; 79(6): 1176–82.doi: 10.1095/biolreprod.108.071217.
  15. Zhao H., Li G., Dalgleish R., et al. Transcription factor SOHLH1 potentially associated with primary ovarian insufficiency. Fertil Steril. 2015; 103(2): 548–53.e5. doi: 10.1016/j.fertnstert.2014.11.011.
  16. Tiotiu D., Alvaro Mercadal B., Imbert R., et al. Variants of the BMP15 gene in a cohort of patients with premature ovarian failure. Hum Reprod. 2010; 25(6): 1581–7. doi: 10.1093/humrep/deq073.
  17. Chand A.L., Ponnampolam A., Harris S.E., et al. Mutational analysis of GDF9 and BMP15 as candidate genes in premature ovarian failure. Fertil Steril. 2006; 86(4): 1009–12. doi: 10.1016/j.fertnstert.2006.02.017.
  18. Rah H., Jeon Y.J., Ko J.J., et al. Association of inhibin α gene promoter polymorphisms with risk of idiopathic primary ovarian insufficiency in Korean women. Maturitas. 2014; 77(2): 163–7. doi: 10.1016/j.maturitas.2013.10.015.
  19. M’Rabet N., Moffat R., Helbing S., Kaech A., Zhang H., de Geyter C. The CC-allee of the pvull polymorphic variant in intron 1 of the a-estrogen receptor gene is significanlty more prevalent amoung infertile woman at risk of premature aging. Fertil Steri. 2012; 98(4): 965–72. e1-5. doi: 10.1016/j.fertnstert.2012.05.048.
  20. Cordts E., Santos A., Peluso C., Bianco B., Barbosa C., Christofolini D. Risk of premature ovarian failure is associated with the PvuII polymorphism at estrogen receptor gene ESR1. J Assist Reprod Genet. 2012; 29: 1421–1425.doi: 10.1007/s10815-012-9884-x.
  21. Richards J.S., Russell D.L., Ochsner S., et al. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res. 2002; 57(1): 195–200. doi: 10.1210/rp.57.1.195
  22. Hong X., Luense L.J., McGinnis L.K., et al. Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology. 2008; 149(12): 6207–12. doi: 10.1210/en.2008-0294.
  23. Lei L., Jin S., Gonzalez G., et al. The regulatory role of Dicer in folliculogenesis in mice. Mol Cell Endocrinol. 2010; 315(1): 63–73. doi: 10.1016/j.mce.2009.09.021
  24. Otsuka M., Zheng M., Hayashi M., et al. Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest. 2008; 118(5): 1944–54. doi: 10.1172/jci33680
  25. Yao N., Lu C.L., Zhao J.J., et al. A network of miRNAs expressed in the ovary are regulated by FSH. Front Biosci 2009; 14: 3239–45. doi: 10.2741/3447
  26. Yao G., Yin M., Lian J., et al. MicroRNA-224 is involved in transforming growth factor-β-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol. 2010; 24(3): 540–551.doi: 10.1210/me.2009-0432
  27. Fiedler S.D., Carletti M.Z., Hong X., et al. MicroRNA expression within periovulatory mural granulosa cells. Biology Reproduction. 2008; 79: 1030–37. doi:10.1095/biolreprod.108.069690
  28. Yao G., Liang M., Liang N., et al. MicroRNA-224 is involved in the regulation of mouse cumulus expansion by targeting Ptx3. Elsevier Science. 2014; 382 (1): 244–53. DOI 10.1016/j.mce.2013.10.014
  29. Hayes E., Kushnir V., Ma X., et al. Intra-cellular mechanism of Anti-Müllerian hormone (AMH) in regulation of follicular development. Elsevier Moll Cel Endocrinol. 2016; 463: 56-65. doi: 10.1016/j.mce.2016.05.019
  30. Xu S., Linher-Melville K., Yang B.B., et al. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology. 2011; 152(10): 3941–3951. doi: 10.1210/en.2011-1147
  31. Toms D., Xu S., Pan B., et al. Progesterone receptor expression in granulosa cells is suppressed by microRNA-378-3p. Elsevier Science. 2016; 399: 95–102. doi: 10.1016/j.mce.2014.07.022
  32. Yin M., Lu M., Yao G., et al. Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol. 2012; 26(7): 1129–43. doi: 10.1210/me.2011-1341
  33. Zhang Q., Sun H., Jiang Y., et al. MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS ONE. 2013; 8(3): e59667. doi: 10.1371/journal.pone.0059667
  34. Yan G., Zhang L., Fang T., et al. MicroRNA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor IB. FEBS Lett. 2012; 586(19): 3263–3270. doi: 10.1016/j.febslet.2012.06.048.
  35. Yang S., Wang S., Luo A., et al. Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary. Biol Reprod. 2013; 89(5): 126.doi:10.1095/biolreprod.113.107730.
  36. Carletti M.Z., Fiedler S.D., Christenson L.K. MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol Reprod. 2010; 83(2): 286-95.doi: 10.1095/biolreprod.109.081448
  37. Du X., Zhang L., Li X., et al. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis. Cell Death Dis. 2016; 7(11): e2476. doi: 10.1038/cddis.2016.379
  38. Zhang J., Ji X., Zhou D. et al. MiR-143 is critical for the formation of primordial follicles in mice. Frontiers in Bioscience. 2013; 18: 588–97. doi:10.2741/4122
  39. Wang C., Li D., Zhang S., et al. MicroRNA-125a-5p induces mouse granulosa cell apoptosis by targeting signal transducer and activator of transcription 3. Wolter Kluwer. 2016; 23(1): 100–7. doi: 10.1097/GME.0000000000000507
  40. Nie M., Yu S., Peng S., et al. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD5. Biol Reprod. 2015; 93(4): 98.doi: 10.1095/biolreprod.115.130690.
  41. Lin F., Li R., Pan Z.X., et al. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS ONE. 2012; 7(6): e38640. doi: 10.1371/journal.pone.0038640
  42. Chen X., Xie M., Liu D., et al. Downregulation of microRNA146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin1 receptorassociated kinase and tumor necrosis factor receptorassociated factor 6. Mol Med Rep. 2015; 12 (4): 5155–62. doi: 10.3892/mmr.2015.4036.
  43. Cho S.H., An H.J., Kim K.A., et al. Single nucleotide polymorphisms at miR-146a/196a2 and their primary ovarian insufficiency-related target gene regulation in granulosa cells. Public Library of Science. 2017; 12(8): e0183479. doi: 10.1371/journal.pone.0183479.
  44. Sang Q., Yao Z., Wang H., et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab 2013; 98(7): 3068–79. doi: 10.1210/jc.2013-1715.
  45. Feng R., Sang Q., Zhu Y., et al. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep. 2015; 5: 8689. doi: 10.1038/srep08689.
  46. Liang M., Yao G., Yin M., et al. Transcriptional cooperation between p53 and NF-κB p65 regulates microRNA-224 transcription in mouse ovarian granulosa cells. Mol Cell Endocrinol. 2013; 370(1–2): 119–29.doi: 10.1016/j.mce.2013.02.014

Поступила 04.06.2019

Принята в печать 21.06.2019

Об авторах / Для корреспонденции

Дмитриева Маргарита Леонидовна, к.м.н., ассистент кафедры акушерства гинекологии ФГБОУ ВО СибГМУ Минздрава России. Тел.: +7 (913) 845-04-75.
E-mail: margarita0708@yandex.ru; orcid.org/0000-0002-2958-9424.
Адрес: 634050, Россия, Томск, ул. Московский тракт, д. 2.
Тихоновская Ольга Анатольевна, д.м.н., профессор кафедры акушерства и гинекологии ФГБОУ ВО СибГМУ Минздрава России.
Тел.: +7 (3822) 901-101 доб.1736. E-mail: tikhonovskaya2012@mail.ru; orcid.org/0000-0003-4309-5831.
Адрес: 634050, Россия, Томск, ул. Московский тракт, д. 2.
Романова Анастасия Александровна, студент 3 курса лечебного факультета ФГБОУ ВО СибГМУ Минздрава России. E-mail: doch.aleksandraromanova@gmail.com.
Адрес: 634050, Россия, Томск, ул. Московский тракт, 2.
Логвинов Сергей Валентинович, д.м.н., профессор, зав. кафедрой гистологии, эмбриологии и цитологии, проректор по учебной работе ФГБОУ ВО СибГМУ.
Минздрава России. Тел.: +7 (3822) 901-101 доб. 1929. E-mail: s_logvinov@mail.ru; orcid.org/0000-0002-9876-6957.
Адрес: 634050, Россия, Томск, ул. Московский тракт, 2.

Для цитирования: Дмитриева М.Л., Тихоновская О.А., Романова А.А., Логвинов С.В. МикроРНК и преждевременная овариальная недостаточность.
Акушерство и гинекология. 2020; 1: 40-6.
https://dx.doi.org/10.18565/aig.2020.1.40-46

Также по теме

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.