Эпигенетические аспекты патогенеза преэклампсии

Кан Н.Е., Мирзабекова Д.Д., Тютюнник В.Л., Красный А.М.

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России, Москва, Россия
Преэклампсия – серьезное осложнение беременности, являющееся ведущей причиной материнской, перинатальной заболеваемости и смертности. Большой интерес представляет изучение новых подходов к профилактике, предикции и терапии данного синдрома, однако это является затруднительным без понимания основ патогенеза. В статье рассмотрены современные представления о механизмах развития преэклампсии. Принципиальное значение отводится активации иммунной системы, предполагается, что клетки как врожденного, так и приобретенного иммунитета играют ключевую роль. Известно, что такие эпигенетические механизмы, как метилирование ДНК, действие некодирующих РНК, регулируют многие гены, в том числе участвующие в воспалении и иммунном ответе, и могут служить прогностическими биомаркерами и терапевтическими мишенями при преэклампсии.
Заключение: Изучение этиопатогенеза может стать основанием для раскрытия механизма развития данного осложнения беременности, что непосредственно облегчает поиск новых маркеров для ранней диагностики преэклампсии.

Ключевые слова

преэклампсия
врожденный иммунитет
моноцитарно-макрофагальный ответ
эпигенетические механизмы

Список литературы

  1. Wilkerson R.G., Ogunbodede A.C. Hypertensive disorders of pregnancy. Emerg. Med. Clin. North Am. 2019; 37(2): 301-16. https://dx.doi.org/10.1016/j.emc.2019.01.008.
  2. Rana S., Lemoine E., Granger J.P., Karumanchi S.A. Preeclampsia: pathophysiology, challenges, and perspectives. Circ. Res. 2019; 124(7): 1094-112. https://dx.doi.org/10.1161/CIRCRESAHA.118.313276. Erratum in: Circ. Res. 2020; 126 (1): e8.
  3. Министерство здравоохранения Российской Федерации. Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде. Федеральные клинические рекомендации (протокол лечения). М.; 2021. 81с. 
  4. Abalos E., Cuesta C., Grosso A.L., Chou D., Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013; 170(1): 1-7. https://dx.doi.org/10.1016/j.ejogrb.2013.05.005.
  5. Игнатко И.В., Флорова В.С., Кузнецов А.С., Кузина Е.Ю. Роль биохимических маркеров в стратификации риска развития преэклампсии: взгляд клинициста. Архив акушерства и гинекологии им. В.Ф. Снегирева. 2017; 4(4): 181-6. https://dx.doi.org/10.18821/2313-8726-2017-4-4-181-186. 
  6. Abalos E., Cuesta C., Carroli G., Qureshi Z., Widmer M., Vogel J.P., Souza J.P.;WHO Multicountry Survey on Maternal and Newborn Health Research Network. Pre-eclampsia, eclampsia and adverse maternal and perinatal outcomes: a secondary analysis of the World Health Organization Multicountry Survey on Maternal and Newborn Health. BJOG. 2014; 121(Suppl. 1): 14-24. https://dx.doi.org/10.1111/1471-0528.12629.
  7. Савельева Г.М., Шалина Р.И., Коноплянников А.Г., Симухина М.А. Преэклампсия и эклампсия: новые подходы к диагностике и оценке степени тяжести. Акушерство и гинекология: новости, мнения, обучение. 2018; 6(4): 25-30. https://dx.doi.org/10.24411/2303-9698-2018-14002. [Savel’eva G.M., Shalina R.I., Konoplyannikov A.G., Simuhina M.A.
  8. Preeclampsia and eclampsia: new approaches in diagnosis and evaluation of severity. Akusherstvo i ginekologiya: novosti, mneniya, obuchenie. 2018; 6 (4): 25-30. (in Russian)]. https://dx.doi.org/10.24411/2303-9698-2018-14002.
  9. Kalisch-Smith J.I., Simmons D.G., Dickinson H., Moritz K.M. Review: Sexual dimorphism in the formation, function and adaptation of the placenta. Placenta. 2017; 54: 10-6. https://dx.doi.org/10.1016/j.placenta.2016.12.008.
  10. Павлов О.В., Сельков С.А. Плацентарные макрофаги. Морфофункциональные характеристики и роль в гестационном процессе. СПб.: Эко-Вектор; 2018. 223с. 
  11. Magatti M., Masserdotti A., Cargnoni A., Papait A., Stefani F.R., Silini A.R., Parolini O. The role of B cells in PE pathophysiology: a potential target for perinatal cell-based therapy? Int. J. Mol. Sci. 2021; 22(7): 3405.https://dx.doi.org/10.3390/ijms22073405.
  12. Lima J., Cambridge G., Vilas-Boas A., Martins C., Borrego L.M., Leandro M. Serum markers of B-cell activation in pregnancy during late gestation, delivery, and the postpartum period. Am. J. Reprod. Immunol. 2019; 81(3): e13090. https://dx.doi.org/10.1111/aji.13090.
  13. Gharesi-Fard B., Mobasher-Nejad F., Nasri F. The expression of T-helper associated transcription factors and cytokine genes in pre-eclampsia. Iran. J. Immunol. 2016; 13(4): 296-308.
  14. Zolfaghari M.A., Arefnezhad R., Parhizkar F., Hejazi M.S., Motavalli Khiavi F.,Mahmoodpoor A., Yousefi M. T lymphocytes and preeclampsia: The potential role of T-cell subsets and related MicroRNAs in the pathogenesis of preeclampsia. Am. J. Reprod. Immunol. 2021; 86(5): e13475.https://dx.doi.org/10.1111/aji.13475.
  15. Nagayama S., Shirasuna K., Nagayama M., Nishimura S., Takahashi M., Matsubara S., Ohkuchi A. Decreased circulating levels of plasmacytoid dendritic cells in women with early-onset preeclampsia. J. Reprod. Immunol. 2020; 141: 103170. https://dx.doi.org/10.1016/j.jri.2020.103170.
  16. Chistiakov D.A., Sobenin I.A., Orekhov A.N., Bobryshev Y.V. Myeloid dendritic cells: development, functions, and role in atherosclerotic inflammation. Immunobiology. 2015; 220(6): 833-44. https://dx.doi.org/10.1016/j.imbio.2014.12.010.
  17. Gilliet M., Cao W., Liu Y.J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 2008; 8(8):594-606. https://dx.doi.org/10.1038/nri2358.
  18. Perdiguero E.G., Geissmann F. The development and maintenance of resident macrophages. Nat. Immunol. 2016; 17(1): 2-8. https://dx.doi.org/10.1038/ni.3341.
  19. Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014; 6: 13. https://dx.doi.org/10.12703/P6-13.
  20. Okizaki S., Ito Y., Hosono K., Oba K., Ohkubo H., Amano H., Shichiri M., Majima M. Suppressed recruitment of alternatively activated macrophages reduces TGF-β1 and impairs wound healing in streptozotocin-induced diabetic mice. Biomed. Pharmacother. 2015; 70: 317-25. https://dx.doi.org/10.1016/j.biopha.2014.10.020.
  21. Nunes P.R., Romão-Veiga M., Peraçoli J.C., Araujo Costa R.A., de Oliveira L.G., Borges V.T.M., Peraçoli M.T. Downregulation of CD163 in monocytes and its soluble form in the plasma is associated with a pro-inflammatory profile in pregnant women with preeclampsia. Immunol. Res. 2019; 67(2-3): 194-201. https://dx.doi.org/10.1007/s12026-019-09078-8.
  22. Ziegler-Heitbrock L. Monocyte subsets in man and other species. Cell. Immunol. 2014; 289(1-2): 135-9. https://dx.doi.org/10.1016/j.cellimm.2014.03.019.
  23. Mildner A., Marinkovic G., Jung S. Murine monocytes: origins, subsets, fates, and functions. Microbiol. Spectr. 2016; 4(5). https://dx.doi.org/10.1128/microbiolspec.MCHD-0033-2016.
  24. Борис Д.А., Волгина Н.Е., Красный А.М., Тютюнник В.Л., Кан Н.Е. Прогнозирование преэклампсии по содержанию CD16-негативных моноцитов. Акушерство и гинекология. 2019; 7: 49-55. https://dx.doi.org/10.18565/aig.2019.7.49-55. 
  25. Melgert B.N., Spaans F., Borghuis T., Klok P.A., Groen B., Bolt A. et al. Pregnancy and preeclampsia affect monocyte subsets in humans and rats. PLoS One. 2012; 7(9): e45229. https://dx.doi.org/10.1371/journal.pone.0045229.
  26. Tang M.X., Zhang Y.H., Hu L., Kwak-Kim J., Liao A.H. CD14++ CD16+ HLA-DR+ Monocytes in peripheral blood are quantitatively correlated with the severity of pre-eclampsia. Am. J. Reprod. Immunol. 2015; 74(2): 116-22. https://dx.doi.org/10.1111/aji.12389.
  27. Alahakoon T.I., Medbury H., Williams H., Fewings N., Wang X.M., Lee V.W. Characterization of fetal monocytes in preeclampsia and fetal growth restriction. J. Perinat. Med. 2019; 47(4): 434-8. https://dx.doi.org/10.1515/jpm-2018-0286.
  28. Yeap W.H., Wong K.L., Shimasaki N., Teo E.C., Quek J.K., Yong H.X. et al. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci. Rep. 2016; 6: 34310. https://dx.doi.org/10.1038/srep34310.
  29. Karapetian А.О., Baev О.R., Sadekova А.А., Krasnyi А.М., Sukhikh G.T. Cell-free foetal DNA as a useful marker for preeclampsia prediction. Reprod. Sci. 2021; 28(5): 1563-9. https://dx.doi.org/10.1007/s43032-021-00466-w.
  30. Peng Y., Luo G., Zhou J., Wang X., Hu J., Cui Y. et al. CD86 is an activation receptor for NK cell cytotoxicity against tumor cells. PLoS One. 2013; 8 (12): e83913. https://dx.doi.org/10.1371/journal.pone.0083913.
  31. Horton H.M., Bernett M.J., Peipp M., Pong E., Karki S., Chu S.Y. et al. Fc-engineered anti-CD40 antibody enhances multiple effector functions and exhibits potent in vitro and in vivo antitumor activity against hematologic malignancies. Blood. 2010; 116(16): 3004-12. https://dx.doi.org/10.1182/blood-2010-01-265280.
  32. Bradley C.A. CD24 – a novel ‘don’t eat me’ signal. Nat. Rev. Cancer. 2019; 19(10): 541. https://dx.doi.org/10.1038/s41568-019-0193-x.
  33. Hayat S.M.G., Bianconi V., Pirro M., Jaafari M.R., Hatamipour M., Sahebkar A.CD47: role in the immune system and application to cancer therapy. Cell. Oncol. (Dordr.). 2020; 43(1): 19-30. https://dx.doi.org/10.1007/s13402-019-00469-5.
  34. Barkal A.A., Brewer R.E., Markovic M., Kowarsky M., Barkal S.A., Zaro B.W. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019; 572(7769): 392-6. https://dx.doi.org/10.1038/s41586-019-1456-0.
  35. Apicella C., Ruano C.S.M., Méhats C., Miralles F., Vaiman D. The role of epigenetics in placental development and the etiology of preeclampsia. Int. J. Mol. Sci. 2019; 20(11): 2837. https://dx.doi.org/10.3390/ijms20112837.
  36. Борис Д.А., Красный А.М., Куревлев С.В., Садекова А.А., Кан Н.Е., Тютюнник В.Л. Метилирование генов TLR2 и ICR IGF2/H19 в плаценте и плазме крови при преэклампсии. Акушерство и гинекология. 2020; 7: 93-8. https://dx.doi.org/10.18565/aig.2020.7.93-98. 
  37. Almomani S.N., Alsaleh A.A., Weeks R.J., Chatterjee A., Day R.C., Honda I. et al. Identification and validation of DNA methylation changes in pre-eclampsia. Placenta. 2021; 110: 16-23. https://dx.doi.org/10.1016/j.placenta.2021.05.005.
  38. Wang W., Min L., Qiu X., Wu X., Liu C., Ma J. et al. Biological function of long non-coding RNA (LncRNA) Xist. Front. Cell Dev. Biol. 2021; 9: 645647. https://dx.doi.org/10.3389/fcell.2021.645647.
  39. Huang T., Chen W., Liu J., Gu N., Zhang R. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol. Biol. 2019; 26(5): 380-8. https://dx.doi.org/10.1038/s41594-019-0218-x.
  40. Hombach S., Kretz M. Non-coding RNAs: classification, biology and functioning. Adv. Exp. Med. Biol. 2016; 937: 3-17. https://dx.doi.org/10.1007/978-3-319-42059-2_1.
  41. Rokni M., Salimi S., Sohrabi T., Asghari S., Teimoori B., Saravani M. Association between miRNA-152 polymorphism and risk of preeclampsia susceptibility. Arch. Gynecol. Obstet. 2019; 299(2): 475-80. https://dx.doi.org/10.1007/s00404-018-4979-y.
  42. Hong F., Li Y., Xu Y. Decreased placental miR-126 expression and vascular endothelial growth factor levels in patients with pre-eclampsia. J. Int. Med. Res. 2014; 42(6): 1243-51. https://dx.doi.org/10.1177/0300060514540627.
  43. Gong R.Q., Nuh A.M., Cao H.S., Ma M. Roles of exosomes-derived lncRNAs in preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021; 263: 132-8.https://dx.doi.org/10.1016/j.ejogrb.2021.06.015.
  44. Luo X., Li X. Long non-coding RNAs serve as diagnostic biomarkers of preeclampsia and modulate migration and invasiveness of trophoblast cells. Med. Sci. Monit. 2018; 24: 84-91. https://dx.doi.org/10.12659/msm.907808.
  45. Михайлова В.А., Овчинникова О.М., Зайнулина М.С., Соколов Д.И., Сельков С.А. Выявление микрочастиц лейкоцитарного происхождения в периферической крови при физиологической беременности и при преэклампсии. Бюллетень экспериментальной биологии и медицины. 2014; 157(6): 721-6. [Mikhailova V.A., Ovchinnikova O.M., Zainulina M.S.,
  46. Sokolov D.I., Selkov S.A. Detection of microparticles of leukocyte origin in peripheral blood during physiological pregnancy and preeclampsia. Bull. Exp. Biol. Med. 2014; 157(6): 721-6. (in Russian)].
  47. Wang Z., Zhao G., Zeng M., Feng W., Liu J. Overview of extracellular vesicles in the pathogenesis of preeclampsia†. Biol. Reprod. 2021; 105(1): 32-9.https://dx.doi.org/10.1093/biolre/ioab060.
  48. Кореневский А.В., Березкина М.Э., Герт Т.Н., Синявин С.А., Сельков С.А., Соколов Д.И. Экспрессия поверхностных молекул и функциональные характеристики эндотелиальных клеток: влияние белковых фракций лизата микровезикул естественных киллеров в системе in vitro. Медицинская иммунология. 2022; 24(3): 463-80. https://dx.doi.org/10.15789/1563-0625-PAF-2376. 
  49. Matsubara K., Matsubara Y., Uchikura Y., Sugiyama T. Pathophysiology of preeclampsia: the role of exosomes. Int. J. Mol. Sci. 2021; 22(5): 2572.https://dx.doi.org/10.3390/ijms22052572.
  50. Göhner C., Fledderus J., Fitzgerald J.S., Schleußner E., Markert U.R., Scherjon S.A., Plösch T., Faas M.M. Syncytiotrophoblast exosomes guide monocyte maturation and activation of monocytes and granulocytes. Placenta. 2015; 36: A47-8. https://dx.doi.org/10.1016/j.placenta.2015.07.329.
  51. Salomon C., Guanzon D., Scholz-Romero K., Longo S., Correa P., Illanes S.E., Rice G.E. Placental exosomes as early biomarker of preeclampsia: potential role of exosomal MicroRNAs across gestation. J. Clin. Endocrinol. Metab. 2017; 102(9): 3182-94. https://dx.doi.org/10.1210/jc.2017-00672.
  52. Li X., Song Y., Liu F., Liu D., Miao H., Ren J. et al. Long non-coding RNA MALAT1 promotes proliferation, angiogenesis, and immunosuppressive properties of mesenchymal stem cells by inducing VEGF and IDO. J. Cell. Biochem. 2017; 118(9): 2780-91. https://dx.doi.org/10.1002/jcb.25927.
  53. Zhao Z., Sun W., Guo Z., Zhang J., Yu H., Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci. 2020; 254: 116900.https://dx.doi.org/10.1016/j.lfs.2019.116900.
  54. Yan T., Liu Y., Cui K., Hu B., Wang F., Zou L. MicroRNA-126 regulates EPCs function: implications for a role of miR-126 in preeclampsia. J. Cell. Biochem. 2013; 114(9): 2148-59. https://dx.doi.org/10.1002/jcb.24563.

Поступила 23.08.2022

Принята в печать 14.09.2022

Об авторах / Для корреспонденции

Кан Наталья Енкыновна, профессор, д.м.н., заместитель директора по научной работе, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова Министерства здравоохранения Российской Федерации, +7(926)220-86-55, kan-med@mail.ru, Researcher ID: B-2370-2015, SPIN-код: 5378-8437, Authors ID: 624900, Scopus Author ID: 57008835600, https://orcid.org/0000-0001-5087-5946. 117997, Россия, Москва, ул. Академика Опарина, д. 4.
Мирзабекова Джамиля Джарулаевна, аспирант, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика
В.И. Кулакова Министерства здравоохранения Российской Федерации, +7(920)984-94-07, Jamilya1705@yandex.ru, https://orcid.org/0000-0002-2391-3334.
117997, Россия, Москва, ул. Академика Опарина, д. 4.
Тютюнник Виктор Леонидович, профессор, д.м.н., в.н.с. центра научных и клинических исследований департамента организации научной деятельности, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова Министерства здравоохранения Российской Федерации, +7(903)969-50-41, tioutiounnik@mail.ru, Researcher ID: B-2364-2015, SPIN-код: 1963-1359, Authors ID: 213217, Scopus Author ID: 56190621500, https://orcid.org/0000-0002-5830-5099, 117997, Россия, Москва, ул. Академика Опарина, д. 4.
Красный Алексей Михайлович, к.б.н., заведующий лабораторией цитологии, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова Министерства здравоохранения Российской Федерации, +7(495)438-22-72, alexred@list.ru,
117997, Россия, Москва ул. Академика Опарина, д. 4.

Вклад авторов: Кан Н.Е., Мирзабекова Д.Д., Тютюнник В.Л., Красный А.М. – концепция и разработка дизайна исследования, получение данных для анализа, сбор публикаций, обработка и анализ материала по теме, написание текста рукописи, редактирование статьи.
Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.
Финансирование: Исследование проведено без спонсорской поддержки.
Для цитирования: Кан Н.Е., Мирзабекова Д.Д., Тютюнник В.Л., Красный А.М. Эпигенетические аспекты патогенеза преэклампсии.
Акушерство и гинекология. 2022; 12: 5-10
https://dx.doi.org/10.18565/aig.2022.198

Также по теме

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.