Prospects for use of surgical navigation to correct congenital malformations in neonatology

DOI: https://dx.doi.org/10.18565/aig.2017.12.96-103

Dorofeeva E.I., Podurovskaya Yu.L., Degtyarev D.N., Prokhin A.V., Aleksandrova N.V., Balashov I.A., Kozlova A.V., Bychenko V.G.

1 National Medical Research Center of Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia, Moscow 117997, Ac. Oparina str. 4, Russia; 2 Westtrade Ltd, Moscow 115201, 1st Warshawsky pr. 1A/9, Russia
The introduction of endoscopic methods to correct congenital malformations is one of the priorities in neonatal surgery. The current techniques of processing visual information and the possibilities of computer graphics maintain a surgeon’s work in natural environments and augmented reality conditions.
Objective. To analyze the authors’ own experience with the follow-up and surgical treatment of newborn infants with malformations and to identify disease groups, the surgical correction of which requires intraoperative navigation.
Subjects and methods. A total of 1354 newborns with malformations were followed up in 2010 to 2016; their medical records were retrospectively analyzed.
Results. Surgical removal of space-occupying lesions and endoscopic interventions for pulmonary and renal malformations are accompanied by the greatest technical difficulties and risks for complications in searching for a pathological focus, mobilizing tissues, and isolating the feeding vessels.
Conclusion. The intraoperative navigation complex is the most in-demand in surgery for congenital malformations of the lung, in the removal of space-occupying lesions, and in the reconstructive surgeries of kidney anomalies.

Supplementary Materials


References


1. Исаков Ю.Ф., Володин Н.Н., Гераськин А.В., ред. Неонатальная хирургия. М.: Династия; 2011. 680с. [Isakov Yu.F., Volodin N.N., Geraskin A.V., ed. Neonatal Surgery. Moscow: Dynasty; 2011. 680p. (in Russian)]

2. Хаматханова Е.М., Кучеров Ю.И., Фролова О.Г., Дегтярев Д.Н., Демидов В.Н., Морозов Д.А., Подуровская Ю.Л., Дорофеева Е.И., Пименова Е.С., Машинец Н.В., Ушакова И.А. Пути совершенствования медицинской помощи при врожденных пороках развития. Акушерство и гинекология. 2011; 4: 79-84. [Khamatkhanova E.M., Kucherov Yu.I., Frolova O.G., Degtyarev D.N., Demidov V.N., Morozov D.A., Podurovskaya Yu.L., Dorofeyeva E. I., Pimenova E.S., Mashinets N.V., Ushakova I.A. Ways to improve the quality of medical care for congenital malformations. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2011; (4): 79-84. (in Russian)]

3. Разумовский А.Ю., Мокрушина О.Г. Эндохирургические операции у новорожденных. М.: МИА; 2015. 344с. [Razumovsky A.Yu., Mokrushina O.G. Endosurgical operations in newborns. Moscow: MIA; 2015. 344p. (in Russian)]

4. Tack P., Victor J., Gemmel P., Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed. Eng. Online. 2016; 15: 115.

5. Щаденко С.В., Горбачева А.С., Арсланова А.Р., Толмачев И.В. 3D-визуализация для планирования операций и выполнения хирургического вмешательства (CAS-технологии). Бюллетень сибирской медицины. 2014; 13(4): 165-71. [Shchadenko S.V., Gorbacheva A.S., Arslanova A.R., Tolmachev I.V. 3D-visualization for planning operations and performing surgical intervention (CAS-technology). Bulletin of Siberian Medicine. 2014; 13 (4): 165-71. (in Russian)]

6. Mezger U., Jendrewski C., Bartels M. Navigation in surgery. Langenbecks Arch. Surg. 2013; 398(4): 501-14.

7. Askeland С., Solberg O.V., Bakeng J.B.L., Reinertsen I., Tangen G.A., Hofstad E.F. et al. CustusX: an open-source research platform for image-guided therapy. Int. J. Comput. Assist. Radiol. Surg. 2016; 11(4): 505-19.

8. Розуменко В.Д. Нейронавигационная технология виртуального 3D планирования и интраоперационного сопровождения лазерной термодеструкции внутримозговых опухолей полушарий большого мозга. Ukrain. Neurosurg. J. 2015; 3: 43-9. [Rozumenko V.D. Neuronavigation technology of virtual 3D planning and intraoperative support of laser thermodestruction of intracerebral tumors of the cerebral hemispheres. Ukrain. Neurosurg. J. 2015; 3: 43-9. (in Russian)]

9. Reinertsen I., Lindseth F., Askeland C., Iversen D.H., Unsgard G. Intra-operative correction of brain-shift. Acta Neurochir. (Wien). 2014; 156(7):1301-10.

10. Su P., Zhang W., Peng Y., Liang A., Du K., Huang D. Use of computed tomographic reconstruction to establish the ideal entry point for pedicle screws in idiopathic scoliosis. Eur. Spine J. 2012; 21: 23-30.

11. Виссарионов С.В., Кокушин Д.Н., Дроздецкий А.П., Белянчиков С.М. Технология использования 3D-KT-навигации в хирургическом лечении детей с идиопатическим сколиозом. Хирургия позвоночника. 2012; 1: 41-7. [Vissarionov S.V., Kokushin D.N., Drozdetsky A.P., Belyanchikov S.M. The technology of 3D-KT-navigation in the surgical treatment of children with idiopathic scoliosis. Hirurgiya pozvonochnika. 2012; 1: 41-7. (in Russian)]

12. Yoshida G., Kanemura T., Ishikawa Y. Percutaneous pedicle screw fixation of a hangman’s fracture using intraoperative, full rotation, three-dimensional image (O-arm)-based navigation: a technical case report. Asian Spine J. 2012; 6(3): 194-8.

13. Rhee S.J., Park S.H., Cho H.M., Suh J.T. Comparison of precision between optical and electromagnetic navigation systems in total knee arthroplasty. Knee Surg. Relat. Res. 2014; 26(4): 214-21.

14. Bae D.K., Song S.J. Computer assisted navigation in knee arthroplasty. Clin. Orthop. Surg. 2011; 3(4): 259-67.

15. Ieguchi M., Hoshi M., Takada J., Hidaka N., Nakamura H. Navigation-assisted surgery for bone and soft tissue tumors with bony extension. Clin. Orthop. Relat. Res. 2012; 470(1): 275-83.

16. Wong K.C., Kumta S.M. Computer-assisted tumor surgery in malignant bone tumors. Clin. Orthop. Relat. Res. 2013; 471(3): 750-61.

17. Al Eissa S., Al-Habib A.F., Jahangiri F.R. Computer-assisted navigation during an anterior-posterior en bloc resection of a sacral tumor. Cureus. 2015;7(11): 373.

18. Jeys L., Matharu G.S., Nandra R.S., Grimer R.J. Can computer navigation-assisted surgery reduce the risk of an intralesional margin and reduce the rate of local recurrence in patients with a tumour of the pelvis or sacrum? Bone Joint J. 2013; 95-B(10): 1417-24.

19. Tang P., Hu L., Du H., Gong M., Zhang L. Novel 3D hexa-pod computer-assisted orthopaedic surgery system for closed diaphyseal fracture reduction. Int. J. Med. Robot. 2012; 8(1): 17-24.

20. Dagnino G., Georgilas I., Köhler P., Morad S., Atkins R., Dogramadzi1 S. Navigation system for robot-assisted intra-articular lower-limb fracture surgery. Int. J. Comput. Assist. Radiol. Surg. 2016; 11(10):1831-43.

21. He J., Tan G., Zhou D., Sun L., Li Q., Yang Y., Liu P. Comparison of isocentric C-arm 3-Dimensional navigation and conventional fluoroscopy for percutaneous retrograde screwing for anterior column fracture of acetabulum. Medicine (Baltimore). 2016; 95(2): e2470.

22. Курганов И.А., Емельянов С.И., Богданов Д.Ю., Матвеев Н.Л. Виртуальное моделирование при проведении лапароскопической адреналэктомии: «дорогая игрушка» или эффективная поддержка? Доктор Ру. Гастроэнтерология. 2016; 118(1): 80-5. [Kurganov I.A., Emelyanov S.I., Bogdanov D.Yu., Matveev N.L. Virtual simulation when performing laparoscopic adrenalectomy: “expensive toy” or effective support? Doctor.Ru. Gastroenterology. 2016; 118 (1): 80-5. (in Russian)]

23. Дубровин В.Н., Егошин А.В., Фурман Я.А., Роженцов А.А., Ерусланов Р.И. Первый опыт применения технологии дополненной реальности на основе 3d-моделирования для интраоперационной навигации при лапароскопической резекции почки. Медицинский альманах. 2015; 37(2): 45-7. [Dubrovin V.N., Egoshin A.V., Furman Ya.A., Rozhentsov A.A., Eruslanov R.I. The first experience of applying the technology of augmented reality on the basis of 3d modeling for intraoperative navigation with laparoscopic resection of the kidney. Meditsinskiy almanakh. 2015; 37 (2): 45-7. (in Russian)]

24. Ieiri S., Uemura M., Konishi K., Souzaki R., Nagao Y., Tsutsumi N. et al. Augmented reality navigation system for laparoscopic splenectomy in children based on preoperative CT image using optical tracking device. Pediatr. Surg. Int. 2012; 28(4): 341-6.

25. Souzaki R., Ieiri S., Uemura M., Ohuchida K., Tomikawa M., Kinoshita Y. et al. An augmented reality navigation system for pediatric oncologic surgery based on preoperative CT and MRI images. J. Pediatr. Surg. 2013; 48(12):2479-83.

26. Kanzaki M., Kikkawa T., Sakamoto K., Maeda H., Wachi N., Komine H. et al. Three-dimensional simulation, surgical navigation and thoracoscopic lung resection. J. Surg. Case Rep. 2013; 2013(3): rjt015.

27. Puri P., еd. Newborn surgery. Hodder Arnold; 2011. 1020p.

28. Polites S.F., Habermann E.B., Zarroug A.E., Thomsen K.M., Potter D.D. Thoracoscopic Vs open resection of congenital cystic lung disease- utilization and outcomes in 1120 children in the United States. J. Pediatr. Surg. 2016; 51(7): 1101-5.

Received 11.10.2017

Accepted 27.10.2017


About the Autors


Dorofeeva Elena Igorevna, Ph.D., Head of Clinical Work of Department of Neonatal Surgery, National Medical Research Center of Obstetrics, Gynecology,
and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia. 117997, Russia, Moscow, Oparina str. 4. Tel.: +74954381424. E-mail: dorofey_i@mail.ru
Podyrovskaya Yulia Leonidovna, Ph.D., Head of Department of Neonatal Surgery, National Medical Research Center of Obstetrics, Gynecology,
and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia.
117997, Russia, Moscow, Oparina str. 4. Tel.: +74954381424. E-mail: y_podurovskaya@oparina4.ru
Degtyarev Dmitry Nikolaevich, Ph.D., M.D., professor, Deputy of Director on Researches, National Medical Research Center of Obstetrics, Gynecology,
and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia.
117997, Russia, Moscow, Oparina str. 4. Tel.: +79260072630. E-mail: glav_neolog@yahoo.com
Prokhin Alexey Victorovich, Analyst of Westtrade Ltd. 115201, Russia, Moscow, 1st Warshawsky pr. 1A/9. Tel.: +79160733881. E-mail: aleksprohin@gmail.com
Aleksandrova Natalia Vladimirovna, Ph.D., M.D., Senior Researcher, National Medical Research Center of Obstetrics, Gynecology,
and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia.
117997, Russia, Moscow, Oparina str. 4. Tel.: +74954382538. E-mail: alexandrova.ncagip@gmail.com
Balashov Ivan Sergeevich, Junior researcher at the Laboratory of Bioinformatics. National Medical Research Center of Obstetrics, Gynecology,
and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia.
117997, Russia, Moscow, Oparina str. 4. Tel.: +79104462005. E-mail: i_balashov@oparina4.ru
Kozlova Alina Vladimirovna, Radiologist of the Department of Radiation Diagnostics, National Medical Research Center of Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia. 117997, Russia, Moscow, Oparina str. 4. Tel.: +74954387647. E-mail: av_kozlova@oparina4.ru
Bychenko Vladimir Gennadyevich, Head of the department of radiation diagnostics, National Medical Research Center of Obstetrics, Gynecology,
and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia.
117997, Russia, Moscow, Oparina str. 4. Tel.: +74954387647. E-mail: v_bychenko@oparina4.ru

For citations: Dorofeeva E.I., Podurovskaya Yu.L., Degtyarev D.N., Prokhin A.V., Aleksandrova N.V., Balashov I.A., Kozlova A.V., Bychenko V.G. Prospects for use of surgical navigation to correct congenital malformations in neonatology.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2017; (12): 96-103. (in Russian)
https://dx.doi.org/10.18565/aig.2017.12.96-103


Similar Articles

Бионика Медиа