Lipidomics: New perspectives on search for markers of neoplasia

Nekrasova M.E., Nazarova N.M., Starodubtseva N.L., Chagovets V.V., Kononikhin A.S., Frankevich V.E., Prilepskaya V.N.

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow 117997, Ac. Oparina str. 4, Russia
Objective. To conduct a systematic analysis of the data available in the current literature on the role of lipids in carcinogenesis and the importance of lipid markers in the diagnosis of HPV-associated cervical diseases and to provide perspectives on the lipidomic analysis of cervical tissue in predicting the course of cervical neoplastic processes.
Material and methods. The review includes data from 46 foreign articles published in the past 5 years and found in Pubmed and Scopus on this topic.
Results. The paper describes a number of lipid markers of tissues in different organs for the early diagnosis of precancerous and cancerous lesions, by estimating the degree of diagnostic significance.
Conclusion. It is necessary to conduct further studies aimed at identifying specific lipid markers for the early diagnosis and prognosis of human papillomavirus-associated cervical diseases.

Keywords

cervical intraepithelial neoplasia
human papillomavirus
cervical cancer
lipidomics
phospholipids
mass-spectrometry

Supplementary Materials

  1. Table 1. The lipid profile of tissues of various cancer types (PC–phosphatidylcholine, PI – phosphatidylinositol, PE – phosphatidylethanolamine, PS – phosphatidylserine, SM – sphingomyelin, LPC – lysophosphatidylcholine, LPS - lysophosphatidylserine).

References

1. World report on cancer diseases. 2014. Available at: http://www.who.int/mediacentre/factsheets/fs297/en/ (in Russian)

2. Sukhikh G.T., Prilepskaya V.N., ed. Prophylaxis of cervical cancer. A guide for doctors. Мoscow: MEDpress-inform; 2012. (in Russian)

3. Rozemeijer K., Penning C., Siebers A.G., Naber S.K., Matthijsse S.M., van Ballegooijen M. et al. Comparing SurePath, ThinPrepand conventional cytology as primary test method: SurePath is associated with increased CIN II(+) detection rates. Cancer Causes Control. 2016; 27(1): 15-25.

4. Lee D.H., Hwang N.R., Lim M.C., Yoo C.W., Joo J., Kim J.Y. et al. Comparison of the performance of Anyplex II HPV HR, the Cobas 4800 human papillomavirus test and Hybrid Capture 2. Ann. Clin. Biochem. 2016; 53(Pt 5): 561-7.

5. White C., Bakhiet S., Bates M., Keegan H., Pilkington L., Ruttle C. et al. Triage of LSIL/ASC-US with p16/Ki-67 dual staining and human papillomavirus testing: a 2-year prospective study. Cytopathology. 2016; 27(4): 269-76.

6. Özgü E., Yıldız Y., Özgü B.S., Öz M., Danışman N., Güngör T. Efficacy of a real time optoelectronic device (TruScreen™) in detecting cervical intraepithelial pathologies: a prospective observational study. J. Turk. Ger. Gynecol. Assoc. 2015; 16(1): 41-4.

7. Du X., Sai X., Liu A., Fu X., Li J., Meng Y. Diagnostic value of TruScreen in cervical lesions screening. Zhonghua Yi Xue Za Zhi. 2015; 95(29): 2379-81.

8. Practice Bulletin No.157: Cervical cancer screening and prevention. Obstet. Gynecol. 2016; 127(1): e1-e20.

9. Escobar-Hoyos L.F., Yang J., Zhu J., Cavallo J.A., Zhai H., Burke S. Keratin 17 in premalignant and malignant squamous lesions of the cervix: proteomic discovery and immunohistochemical validation as a diagnostic and prognostic biomarker. Mod. Pathol. 2014; 27(4): 621-30.

10. Zoidakis I., Lygirou V., Kontostathi G., Vlahou A., Anagnou N.P., Pappa K.I. Cofilin-1 and Cathepsin-D are putative early cervical cancer biomarkers. EUROGIN 2015 – HPV infection and related cancers. 2015.

11. Zhao Q., He Y., Wang X.L., Zhang Y.X., Wu Y.M. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma. Clin. Transl. Oncol. 2015; 17(8): 620-31.

12. Tsuchida N., Murugan A.K., Grieco M. Kirsten Ras* oncogene: Significance of its discovery in human cancer research. Oncotarget. 2016; 7(29): 46717-33.

13. Fiorentino F.P., Tokgün E., Solé-Sánchez S., Giampaolo S., Tokgün O., Jauset T. et al. Growth suppression by MYC inhibition in small cell lung cancer cells with TP53 and RB1 inactivation. Oncotarget. 2016; 7(21): 31014-28.

14. Juneja S., Chaitanya N.B., Agarwal M. Immunohistochemical expression of BCL-2 in oral epithelial dysplasia and oral squamous cell carcinoma. Indian J. Cancer. 2015; 52(4): 505-10.

15. Parvin S., Islam M.S., Al-Mamun M.M., Islam M.S., Ahmed M.U., Kabir E.R., Hasnat A. Association of BRCA1, BRCA2, RAD51 and HER2 gene polymorphisms with the breast cancer risk in the Bangladeshi population. Breast Cancer. 2016; Apr. 11.

16. Swierczynski J.,Hebanowska A., Sledzinski T. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J. Gastroenterol. 2014; 20(9): 2279-303.

17. Czerska M., Zieliński M., Gromadzińska J. Isoprostanes - а novel major group of oxidative stress markers. Int. J. Occup. Med. Environ. Health. 2016; 29(2): 179-90.

18. Vauzour D., Martinsen A., Layé S. Neuroinflammatory processes in cognitive disorders: Is there a role for flavonoids and n-3 polyunsaturated fatty acids in counteracting their detrimental effects? Neurochem. Int. 2015; 89:63-74.

19. Coffey M.J., Torretti B., Mancuso P. Adipokines and cysteinyl leukotrienes in the pathogenesis of asthma. J. Allergy (Cairo). 2015; 2015: 157919.

20. Jiang S., Li Y., Lin S., Yangc H., Guand Xin-yuan, Zhoua H. et al. Mass spectrometry-based lipidomics analysis using methyl tert-butyl ether extraction in human hepatocellular carcinoma tissues. Analyt. Methods. 2015; 19(7):8466-71.

21. Goto T., Terada N., Inoue T., Kobayashi T., Nakayama K., Okada Y. et al. Decreased expression of lysophosphatidylcholine (16:0/OH) in high resolution imaging mass spectrometry independently predicts biochemical recurrence after surgical treatment for prostate cancer. Prostate. 2015; 75(16): 1821-30.

22. Burch T.C., Isaac G., Booher C.L., Rhim J.S., Rainville P., Langridge J. et al. Comparative metabolomic and lipidomic analysis of phenotype stratified prostate cells. PLoS One. 2015; 10(8): e0134206.

23. Li J., Ren S., Piao H.L., Wang F., Yin P., Xu C. et al. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Scientific Rep. 2016; 6: 20984.

24. Sapandowski A., Stope M., Evert K., Evert M., Zimmermann U., Peter D. et al. Cardiolipin composition correlates with prostate cancer cell proliferation. Mol. Cell. Biochem. 2015; 410(1-2): 175-85.

25. Kiebish M.A., Han X., Cheng H., Chuang J.H., Seyfried T.N. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J. Lipid Res. 2008; 49(12): 2545-56.

26. Wang S., Chen X., Luan H., Gao D., Lin S., Cai Z. et al. Matrix-assisted laser desorption/ionization mass spectrometry imaging of cell cultures for the lipidomic analysis of potential lipid markers in human breast cancer invasion. Rapid Commun. Mass Spectrom. 2016; 30(4): 533-42.

27. Kim I.C., Lee J.H., Bang G., Choi S.H., Kim Y.H., Kim K.P. et al. Lipid profiles for HER2-positive breast cancer. Anticancer Res. 2013; 33(6):2467-72.

28. Dória M.L., Cotrim Z., MacEdo B., Simões C., Domingues P., Helguero L., Domingues M.R. Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells. Breast Cancer Res. Treat. 2012; 133(2): 635-48.

29. Cífková E., Holčapek M., Lísa M., Vrána D., Gatěk J., Melichar B. Determination of lipidomic differences between human breast cancer and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. Anal. Bioanal. Chem. 2015; 407(3): 991-1002.

30. Hilvo M., Denkert C., Lehtinen L., Müller B., Brockmöller S., Seppänen-Laakso T. et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 2011; 71(9): 3236-45.

31. Kang S., Lee A., Park Y.S., Lee S.C., Park S.Y., Han S.Y. et al. Alteration in lipid and protein profiles of ovarian cancer similarity to breast cancer. Int. J. Gynecol. Cancer. 2011; 21(9): 1566-72.

32. Kim I.C., Bang G., Lee J.H., Kim K.P., Kim Y.H., Kim H.K., Chung J. Low C24-OH and C22-OH sulfatides in human renal cell carcinoma. J. Mass Spectrom. 2014; 49(5): 409-16.

33. Park Y.S., Yoo C.W., Lee S.C., Park S.J., Oh J.H., Yoo B.C. et al. Lipid profiles for intrahepatic cholangiocarcinoma identified using matrix-assisted laser desorption/ionization mass spectrometry. Clin. Chim. Acta. 2011; 412(21-22): 1978-82.

34. Morita Y., Sakaguchi T., Ikegami K., Goto-Inoue N., Hayasaka T., Hang V.T. et al. Lysophosphatidylcholine acyltransferase 1 altered phospholipid composition and regulated hepatoma progression. J. Hepatol. 2013; 59(2): 292-9.

35. Goto T., Terada N., Inoue T., Nakayama K., Okada Y., Yoshikawa T. et al. The expression profile of phosphatidylinositol in high spatial resolution imaging massspectrometry as a potential biomarker for prostate cancer. PLoS One. 2014; 9(2): e90242.

36. Jiang Y., DiVittore N.A., Young M.M., Jia Z., Xie K., Ritty T.M. et al. Altered sphingolipid metabolism in patients with metastatic pancreatic cancer. Biomolecules. 2013; 3(3): 435-48.

37. Ryu J., Bang G., Lee J.H., Choi Sh. Lipid MALDI MS profiling accurately distinguishes papillary thyroid carcinoma from normal tissue. J. Proteomics Bioinformatics. 2013; 6(4): 65-71.

38. Ishikawa S., Tateya I., Hayasaka T., Masaki N., Takizawa Y., Ohno S. et al. Increased expression of phosphatidylcholine (16:0/18:1) and (16:0/18:2) in thyroid papillary cancer. PLoS One. 2012; 7(11): e48873.

39. Marien E., Meister M., Muley T., Fieuws S., Bordel S., Derua R. et al. Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles. Int. J. Cancer. 2015; 137(7): 539-48.

40. Marien E., Meister M., Muley T., Gomez Del Pulgar T., Derua R., Spraggins J.M. et al. Phospholipid profiling identifies acyl chain elongation as a ubiquitous trait and potential target for the treatment of lung squamous cell carcinoma. Oncotarget. 2016; 7(11): 12582-97.

41. Kwon S.Y., Choi S.H., Park Y.S., Park D.Y., Park Y.I., Hwang I. et al. Lipid MALDI MS profiles of gastric cancer. Open Proteomics Journal. 2015;7: 1-4.

42. Ching L.K., Gounder P.P., Bulkow L., Spradling P.R., Bruce M., Negus S. et al. Incidence of hepatocellular carcinoma according to hepatitis B virus genotype in Alaska Native people. Liver Int. 2016; 36(10):1507-15.

43. Tornesello M.L., Buonaguro L., Izzo F., Buonaguro F.M.. Molecular alterations in hepatocellular carcinoma associated with hepatitis B and hepatitis C infections. Oncotarget. 2016; 7(18): 25087-102.

44. Chen S., Yin P., Zhao X., Xing W., Hu C., Zhou L., Xu G. Serum lipid profiling of patients with chronic hepatitis B, cirrhosis and hepatocellular carcinoma by ultra fast LC/IT-TOF MS. Electrophoresis. 2013; 34(19): 2848-56.

45. Passos-Castilho A.M., Carvalho V.M., Cardozo K.H., Kikuchi L., Chagas A.L., Gomes-Gouvêa M.S. et al. Serum lipidomic profiling as a useful tool for screening potential biomarkers of hepatitis B-related hepatocellular carcinoma by ultraperformance liquid chromatography-mass spectrometry. BMC Cancer. 2015; 15: 985.

Received 18.08.2016

Accepted 02.09.2016

About the Authors

Nekrasova Maria Evgenievna, PhD student, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954381403. E-mail: mashenka_90@mail.ru
Nazarova Niso Mirzoevna, MD, PhD, Senior Researcher, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954381403. E-mail: grab2@yandex.ru
Starodubtseva Nataliia Leonidovna, PhD, Head of Laboratory of Proteomics and Metabolomics of Human Reproduction, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia. 117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +79164639867. E-mail: n_starodubtseva@oparina4.ru
Chagovets Vitaliy Viktorovich, PhD, Senior Researcher of Laboratory of Proteomics and Metabolomics of Human Reproduction, Research Center of Obstetrics,
Gynecology and Perinatology, Ministry of Health of Russia. 117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +79169191466. E-mail: vvchagovets@gmail.com
Kononikhin Alexey Sergeevich, PhD, Researcher of Laboratory of Proteomics and Metabolomics of Human Reproduction, Research Center of Obstetrics,
Gynecology and Perinatology, Ministry of Health of Russia. 117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +79167854781. E-mail: konoleha@yandex.ru
Frankevich Vladimir Evgenievich, PhD, Head of Department of Systems Biology in Reproduction, Research Center of Obstetrics, Gynecology and Perinatology,
Ministry of Health of Russia. 117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954380788, ext. 2198. E-mail: v_frankevich@oparina4.ru
Prilepslaya Vera Nikolaevna, MD, PhD, Professor, Deputy Director for Science, Research Center of Obstetrics, Gynecology and Perinatology,
Ministry of Health of Russia. 117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954386934. E-mail: VPrilepskaya@mail.ru

For citations: Nekrasova M.E., Nazarova N.M., Starodubtseva N.L., Chagovets V.V., Kononikhin A.S., Frankevich V.E., Prilepskaya V.N. Lipidomics: New perspectives on search for markers of neoplasia. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2017; (3): 34-40. (in Russian)
http://dx.doi.org/10.18565/aig.2017.3.34-40

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.